

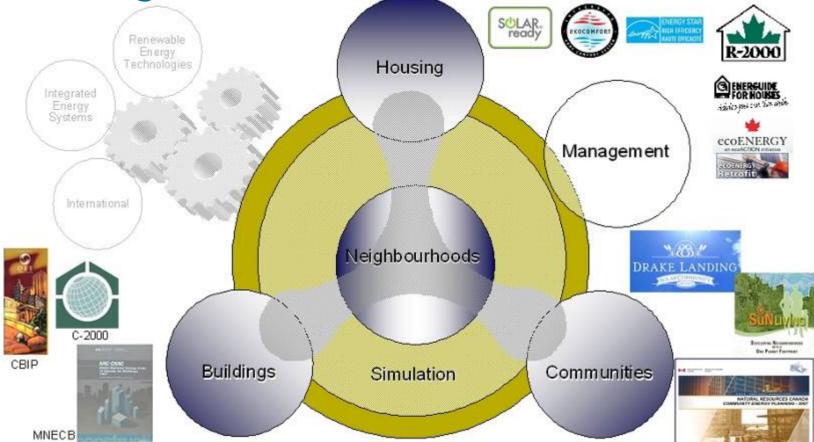
Leadership in ecoInnovation

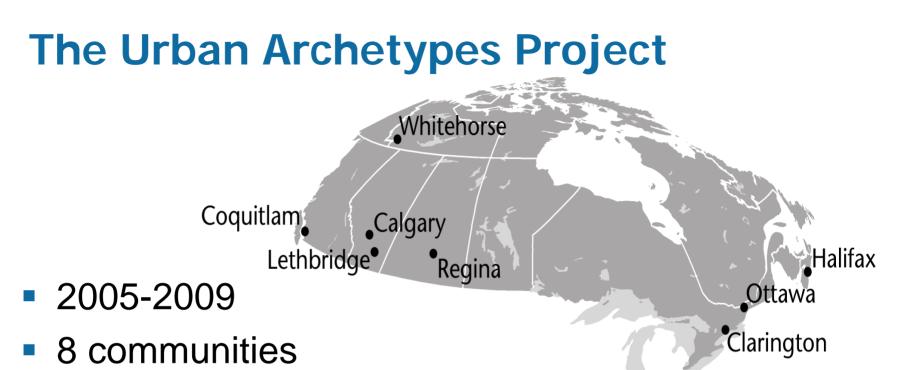
Residential Energy Use in Older Neighbourhoods: findings from the Urban Archetypes Project

Jessica Webster BA, MSLS Natural Resources Canada


Sustainable Communities: Do Older Neighbourhoods Make the Grade? The Heritage Imperative: Old Buildings in an Age of Environmental Crisis Toronto, September 25th, 2009

Overview


Natural Resources Canada (NRCan) CanmetENERGY Housing, Simulation, Buildings and Communities The Urban Archetypes Project **Objectives** Results **Transportation** Housing **Some conclusions Recommendations for older houses EcoENERGY Retrofit Homes program** Addressing the energy ingenuity gap in communities


CanmetENERGY: Housing, Simulation, Buildings and Communities

CanmetENERGY

- 31 neighbourhood study areas
 - Distinct urban form
 - Being of interest from an energy perspective
 - Approximately 300 dwelling units in size CanmetENERGY

Older neighbourhoods

From east to west:

- Hydrostone, Halifax NS
- Sandy Hill and New Edinburgh, Ottawa ON
- Newcastle, Clarington ON
- Centre Square, Regina SK
- London Road, Lethbridge AB
- Mission, Calgary AB

Objectives

- To explore the linkages between urban form, lifestyle patterns of area residents and energy use on the neighbourhood scale
- Develop neighbourhood energy profiles
- Build a library of case studies
- Make a general case for or against certain development patterns or aspects of development patterns
- Provide data to project participants
- Effectively communicate energy information
- Work towards a methodology for community energy characterization

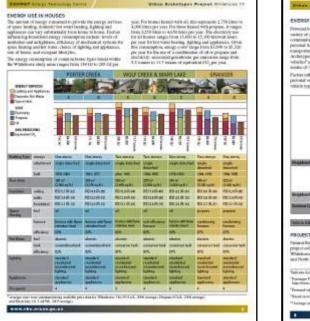
The Urban Archetypes Project

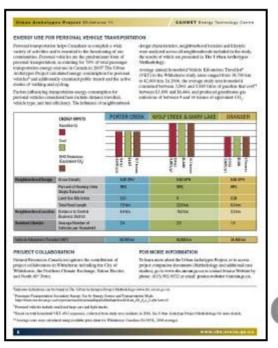
IS:

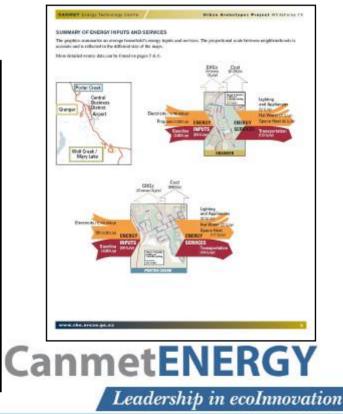
Snapshot of annual energy end-use, cost and GHG emissions of residents in existing neighbourhoods for housing and vehicle transportation, taking urban form and demographic variables into account

Is not:

- Building lifecycle analysis
 - Does not consider embodied energy
 - Does not consider energy for water, waste or food
- Recommendations for energy efficiency
- Renewable energy technology assessment





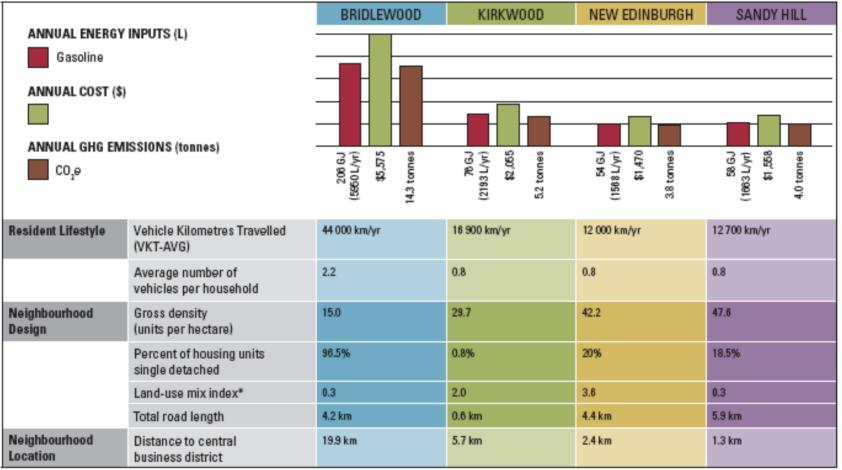


Urban Archetypes Community Case Studies

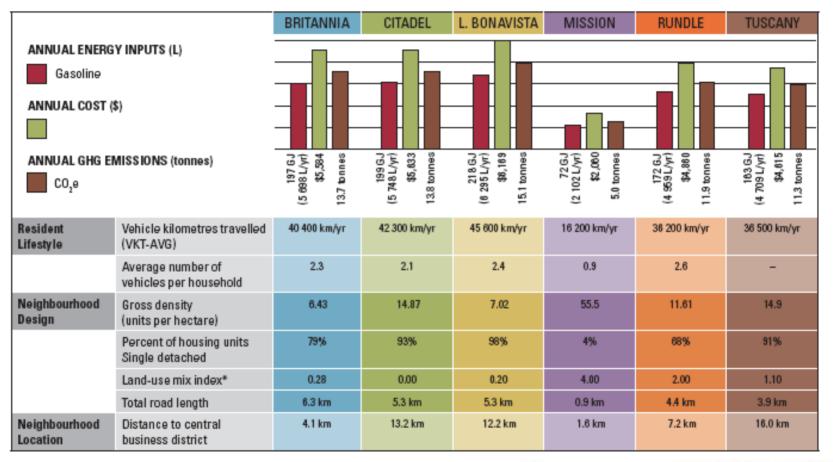
- Comparative summary of neighbourhood results on a community basis
- Available online: Google 'Urban Archetypes Project'
- www.canmetenergy.nrcan.gc.ca

Transportation analysis I

- Transportation: energy, cost, GHGs
 - Estimated annual household Vehicle Kilometres Travelled
 - Make, model & year of vehicles
 - Provided by area residents in interviews
- Urban Form
 - Measured through spatial analysis
 - Using Geographical Information Systems (GIS)


Demographics

- Household size, income
- Provided in interviews

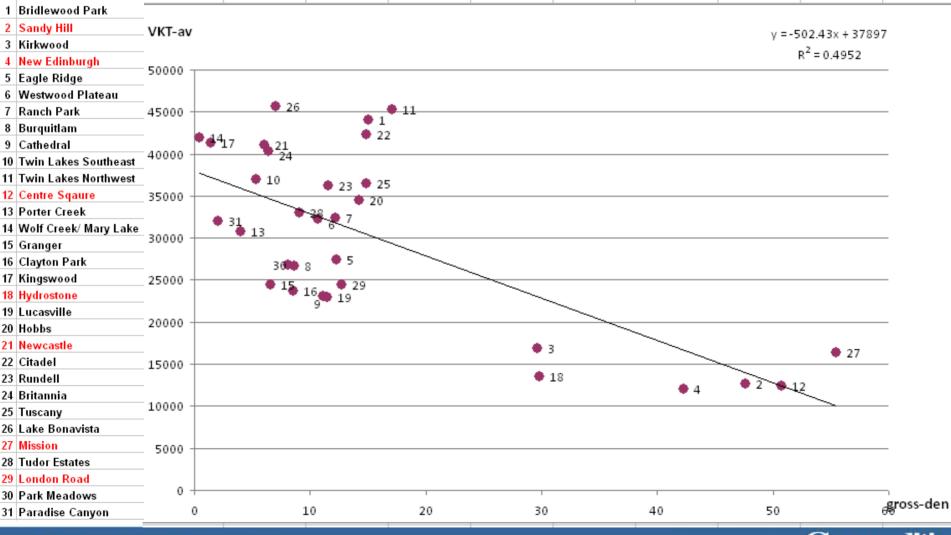

Transportation results: Ottawa

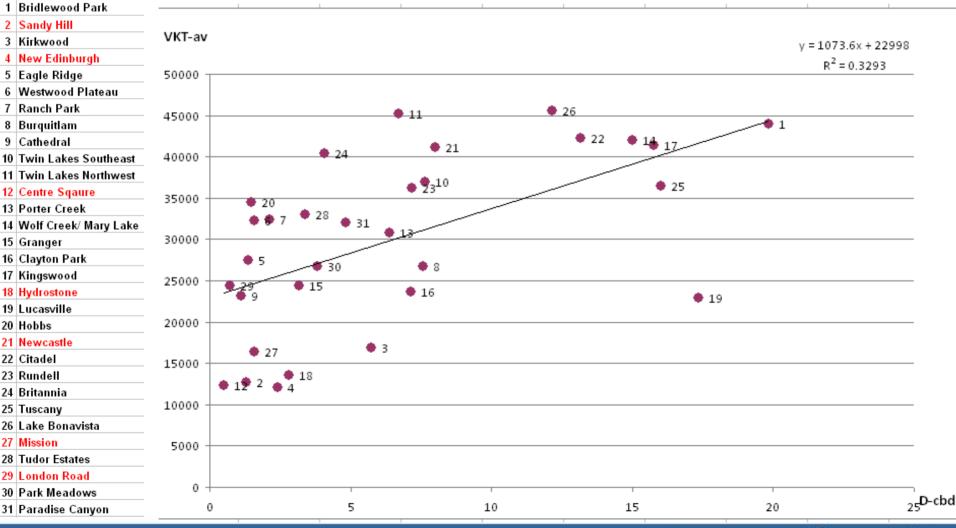
CanmetENERGY

Transportation results: Calgary

CanmetENERGY

Transportation analysis II


- Average household Vehicle Kilometres Travelled (VKT) used as the dependent variable in multivariate regression analysis
- Spatial variables of urban form quantified included:
 - Neighbourhood design
 - Density
 - % of single family dwellings
 - Land use mix index
 - Street connectivity
 - Neighbourhood location
 - Distance to CBD
 - Distance to rail
 - Distance to highway interchange
- Subsequent bi-variate analysis took household size and income into account



Transportation results: correlation of VKT to gross residential density

Transportation results: correlation of VKT to distance to CBD

Canadä

Some conclusions on transportation

- Older neighbourhoods in Urban Archetypes Project:
 - Centrally located
 - Higher densities
 - More mixed-use
- Lower Vehicle Kilometres Travelled
 - Less fuel consumed, lower costs, fewer GHG emissions
- Anecdotally, residents of these neighbourhoods also took more walking, cycling and transit trips
- The older neighbourhoods studied in the urban archetypes project were more inherently efficient from a transportation energy perspective
- Urban form variables became less significant when household size taken into account

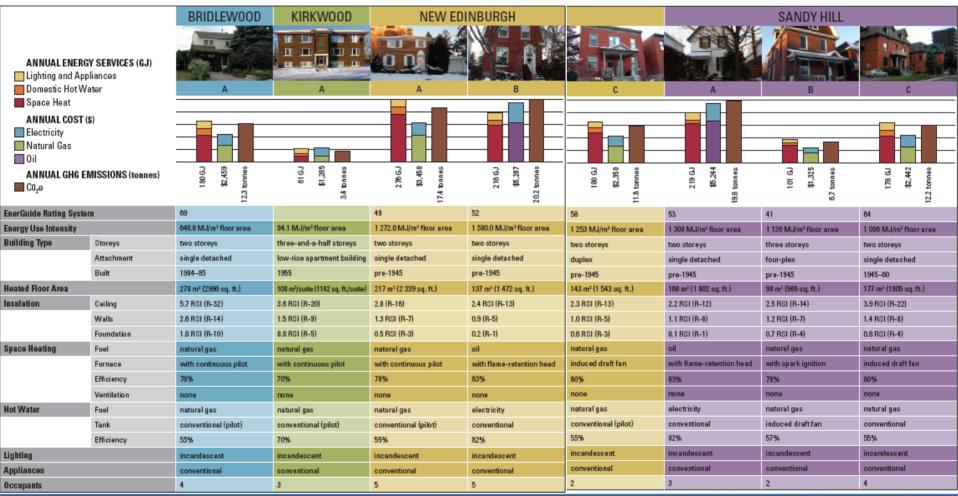
Housing analysis

Total annual energy, cost and GHGs

Space heating, hot water and lighting/appliances

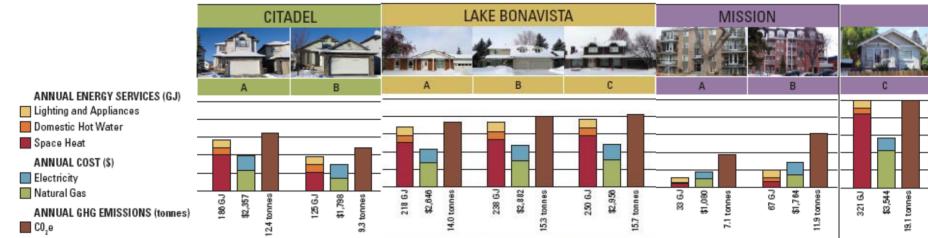
Initial approach: utilities data

- Inconsistencies in data
- Inability to link energy use to dwelling type


Simulation of representative dwelling types

- Houses: NRCan EnerGuide for Houses audits and HOT2XP/HOT2000 software
 - Pre-retrofit audits
- Apartments: Building geometry from site visits, and 'Screening Tool for New Building Design'
 - <u>http://screen.nrcan.gc.ca</u>

Housing results: Ottawa



Natural Resources Ressources naturelles Canada

Canada

Housing results: Calgary, selected

					05	AF			
EnerGuide Rating System		69	76	66	65	65	n/a	n/a	44
Energy Use Intensity		703 MJ/m ²	605 MJ/m ¹	624 MJ/m ²	720 MJ/m ¹	719 MJ/m ¹	462 MJ/m ²	475 MJ/m ¹	1 378 MJ/m ²
Building Type	Storeys	two storeys	one storey	one storey	two storeys	two storeys	four storeys / 16 suites	six storeys / 38 suites	two storeys
	Attachment	single detached	single detached	single detached	single detached	single detached	MURB	MURB	single detached
	Built	1984-95	post-1995	1961-77	1961-77	1978-83	1960	1998	pre-1945
Heated Floor Area		265 m ² (2 846 sq.ft.)	207 m ² (2 226 sq.ft.)	348 m² (3 749 sq.ft.)	330 m² (3 554 sq.ft.)	348 m² (3 746 sq.ft.)	73 m² (785 sq.ft.)	140 m² (1 506 sq.ft.)	233 m² (2 509 sq.ft.)
Insulation	Ceiling	5 RSI (R-28)	6.0 RSI (R-34)	4.6 RSI (R-26)	4.3 RSI (R-24)	3.6 RSI (R-20)	2.6 RSI (R-15)	4.3 RSI (R-24)	2.1 RSI (R-12)
	Walls	2,6 RSI (R-15)	2.8 RSI (R-16)	1.9 RSI (R-11)	1.9 RSI (R-11)	1.9 RSI (R-11)	1.8 RSI (R-10)	2.9 RSI (R-16)	1.0 RSI (R-6)
	Foundation			1.0 RSI (R-6)	1.2 RSI (R-7)	1.2 RSI (R-7)	none	none	0.6 RSI (R-3)
Space Heating	Fuel	2.4 RSI (R-14)	2.2 RSI (R-12)	natural gas	natural gas	natural gas	natural gas	natural gas	natural gas
		natural gas	natural gas	with continuous pilot	with continuous pilot	with continuous pilot	boiler, natural draft.	boiler, natural draft.	with continuous pilot
	Furnace	with continuous pilot	boiler with	with continuous phot	With Continuous phot	Mar continuodo pilot	on-off	on-off	With continuous pilot
	Efficiency	70.01	spark ignition	78%	78%	78%	80%	80%	78%
	Ventilation	78%	80%	none	none	none	none	mechanical outdoor air supply	none
		none	none						
Hot Water	Fuel	natural gas	natural gas	natural gas	natural gas	natural gas	natural gas	natural gas	natural gas
	Tank	conventional	conventional	conventional	conventional	conventional	conventional	conventional	conventional
	Efficiency	55%	55%	55%	55%	55%	80%	80%	55%
Lighting		incandescent	incandescent	incandescent	incandescent	incandescent	incandescent	incandescent	incandescent
Appliances		conventional	conventional	conventional	conventional	conventional	conventional	conventional	conventional
Occupants		3	3	3	4	4	1	2	2

Canada

Some conclusions on housing

- Greater variation in housing stock in older neighbourhoods
 - Dwelling type, age, retrofit, tenure
- Housing energy performance varies accordingly
 - Old large houses can be among the most inefficient
 - Can be retrofit to be highly efficient
 - Low-rise apartments studied in archetypes project were found to be more efficient
 - Less access to data on apartments overall
 - Tenure can be a disincentive to efficiency and retrofits
- Variety of housing stock makes for more complete communities
 - Subdivided older homes appear to use less energy on a household basis

Recommendations for older houses

Air sealing

- Caulking & weatherstripping
- Heating system tune-up
- Insulation
 - Vapour and air barriers
 - Basements and attics
 - Blowing nsulation into wood-frame walls
 - If original exterior finish has been replaced previously the opportunity exists to copy the original finish when retrofitting the exterior

Windows

- Weatherstripping of older, single-pane, wood-frame windows
- Possible to have custom wood storms made to order if original wood storm windows are not salvagable
- Select interior storms; avoid metal storms or storm-and-screen combinations
- Doors
 - Weatherstripping
 - Avoid aluminum storms
 - Restore enclosed vestibule

ecoENERGY Retrofit Homes

- Program from the Office of Energy Efficiency (OEE) at NRCan
- Formerly known as EnerGuide for Houses
 - Still uses EnerGuide Rating System (ERS)
- 427,924 pre-retrofit evaluation completed since April 1, 2007
- 183.7M paid in incentives
- Average grant \$1,423
- Average energy savings 23%
- Average GHG reductions 3.3 tonnes
- 1,570 certified energy advisors across Canada
 - Audit must be completed by a licensed contract prior to commencing retrofits
- 25% in additional incentives through March 31, 2010
- www.ecoaction.gc.ca/ecoenergy

Addressing the energy ingenuity gap in communities

- Canada needs a methodology for community energy and GHG characterization
 - Best practice guidelines or standards
- Energy and emissions inventories
 - Benchmarking
 - Target setting
 - Scenario-based modelling 'what if'
- Integration of energy information into community decision making
 - Linking energy to the land use planning process
- Different levels of detail required for energy decisions at different scales in the urban environment
 - Mapping energy demand and supply using GIS

Current projects

- Community Energy Solutions Roadmap
 - Approved by the demand Side Management Committee of the Council of Energy Ministers
- Minister's roundtable on Integrated Community Energy Solutions
- Federal Technical Committee on Urban Energy Characterization
 - Scan of federal energy data sources
 - Scan of energy and GHG characterization methodologies (CSA)
- Energy mapping research
 - Prototype developed for City of Prince George BC
 - Energy mapping symposium

Thank you!

Contact: Jessica Webster Jessica.Webster@nrcan.gc.ca 613 992 9532 www.canmetenergy.nrcan.gc.ca

Leadership in ecoInnovation

Natural Resources **Ressources naturelles** Canada

Canada